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I. Abstract 

The shift towards autonomous-driving technology in the car 

industry has seen rapid growth and advancements, however, the 

toughest obstacle remains decision-making. To meet this 

challenge we formulate driving as a Naive Bayes and a Neural 

network implementation in which states capture compact sensor-

derived descriptors of the environment in order to interpret real-

time driving data (lane position, speed, traffic), selecting driving 

actions optimal to the current driving data (braking, accelerating, 

turning), and dynamically adapting to traffic situations to optimize 

safety. The dataset was divided into training and testing subsets, 

which were split into a 70/30 dataset to ensure fair evaluation. 

The Naive Bayes classifier was trained using the training data and 

tested for accuracy using the testing set (unseen data), which 

provided a baseline for comparison. Then we created a 

feedforward Neural Network incorporating features such as 

forward propagation, backpropagation, and early stopping to 

prevent overfitting. To assess the model generalization over the 

data set and overfitting behavior, training and validation loss and 

accuracy were plotted across epochs. Model performance was 

evaluated using accuracy, precision, recall, and F1 score metrics. 

The results of this project demonstrate that while both models 

performed well, the neural network benefited from the flexibility 

of learned representations and robust regularization through early 

stopping, achieving competitive performance. 

II. Introduction 

Advances in technology dealing with perception have 

allowed autonomous vehicles to detect lanes, traffic signals, and 

nearby actors with increasing reliability. Yet perception alone 

does not guarantee safety. A self-driving car must decide how to 

act on what it sees. Choosing the wrong maneuver or reacting too 

slowly can turn perfect sensor readings into hazardous outcomes. 

This project tackles that problem by framing high-level driving 

decisions as a Naive Bayes and Neural Network. The stakes are.  

 

high. U.S. roads alone recorded an estimated 42,795 traffic 

fatalities in 2022, and human error is implicated in the vast 

majority of crashes. A dependable AI controller that can reason 

consistently about safety, comfort, and efficiency would be 

beneficial to drivers. The Primary Goal is to understand the trade-

offs between simplicity and flexibility when choosing between a 

probabilistic model like Naive Bayes and a more complex, non-

linear model like a neural network. 

Naive Bayes classifiers operate on Baye’s Theorem and are 

known for their speed and effectiveness in high-dimensional 

problems; this was our reasoning for implementing this for our 

project. On the other hand, neural networks are powerful and 

capable of learning complex relationships in data sets. However, 

they require careful tuning and regularization methods to avoid 

overfitting. Our project emphasizes both of these by implementing 

and evaluating the models effectively. To ensure a fair 

comparison of the dataset (given its size), we split the set into 

training and testing sets (70/30). The neural network includes 

essential features such as forward and backward propagation, 

mean squared error loss, and early stopping. All work towards an 

effective model and to avoid overfitting. Performance was 

evaluated using accuracy precision, recall, and F1 score. 

Visualization of training data and accuracy gives us visuals to see 

how the model is performing. Through this process, we were able 

to highlight differences in models, all while reaching our goal in 

the brief time span of the project. 

III. Description 

 The database that will be used in this project was found on 

Kaggle, created by Udacity. The Self-Driving Cars dataset 

consists of real-world data collected from simulations of 

autonomous vehicles. Particularly, the dataset includes sensor 

reading, camera images, and driving behavior records. These 

pieces of data will be suitable for training the model developed in 

this project. The dataset’s picture labeling is as follows: car,’ 

‘truck’, ‘pedestrian’, ‘bicyclist’, and ‘light’. These are all 

examples of objects a self-driving vehicle would see when 

driving. The dataset also includes steering angles, throttle and 

brake data, speed data, lidar and sensor data, lane information, 

and traffic light status. The collection of this data will produce a 

well-trained model that can optimize autonomous vehicle 

decision-making. 



Our implementation begins with parsing the features 

listed in the dataset, such as relevant fields like speed, object 

types, traffic light status, lane position, and sensor inputs. All 

were selected based on their relevance to decision-making when 

driving. We then normalized continuous variables such as speed, 

throttle, and distances using standard score scaling to ensure 

consistency across features. This was valuable when training the 

model to ensure accuracy. Next, the target outputs, representing 

different driving maneuvers, were encoded numerically and 

converted into one vector that was used for neural network 

training. In preprocessing, we focused on building a compact 

preprocessing pipeline that converts the high-resolution Udacity 

camera frames into a form that both learning algorithms can 

process quickly. Each RGB image is read from disk, resized 

to 64 × 64 pixels to reduce memory and training time, converted to 

grayscale, and flattened into a 4096-element vector. These vectors 

are then scaled to the [0,1] range so the neural network’s gradients 

remain well-behaved. Corresponding object labels, car, truck, 

pedestrian, bicyclist, and traffic light are mapped to integers, after 

which a single stratified 70%/30% split is applied. The resulting 

feature matrix and target array are cached in a lightweight HDF5 

file so that subsequent runs can bypass the image-processing step 

entirely. Below are images of our preprocessing output. 

 
 This image pulls from the new list of sample images that 

are labeled 1 through 5 according to what the image displays. 

Below is an enlarged view of one of the samples. 

 

 
 This graph shows the label distributions of a subset of 

images in the dataset. As shown, there are diverse types of images 

that are used in the training process. 

 
Training and evaluation are straightforward. The neural 

network iterates through the 70 % training partition in mini-

batches of thirty-two, calculating validation accuracy on the 30 % 

hold-out set after every epoch and checkpointing the weights that 

achieve the best score. We implemented an early stopping 

technique used during validation of a subset, which prevented 

overfitting of the smaller subset of the training data. Loss and 

accuracy of the network were record after each epoch to visualize 

learning progress and detect overfitting. The Naïve Bayes model 

is fit once on the same training split and then scored on the 

identical test split. After training, for testing, both models were 

evaluated on the 30% testing set. The performance was measured 

using the following metrics: accuracy, precision, recall, and F1 

Score. Also, visualization of loss and accuracy curves for both 

training and validation data provided additional insight into the 

model's generalization and overfitting behavior. 

 

 

 

 

 



IV. Experimental Evaluation 

To conduct the experiments for this project, only 

fundamental Python libraries were used to ensure full 

transparency, manual control, and to develop a better 

understanding of the processes completed when implementing a 

model through the modeling process. Specifically, the 

implementation relied on numpy for all numerical computations 

and array operations, and matplotlib for visualizing training 

progress and results. No machine learning libraries such as scikit-

learn, TensorFlow, or PyTorch were used for model 

implementation, training, or evaluation. This restriction highlights 

the internal mechanics of both algorithms due to the brief time 

span of the project. However, this scratch process reinforces an 

educational understanding of how classification models operate 

under the hood. 

The neural network component of the project was built 

entirely from scratch, beginning with a reference implementation 

introduced in class. The original version included a simple two-

layer feedforward neural network trained on manually defined 

binary image data. The source code provided by our professor 

served as a starting point and was significantly extended to 

include dataset preprocessing, dynamic input sizing, early 

stopping functionality, loss tracking, and full evaluation metrics. 

For reference, the original classroom neural network 

implementation can be summarized by the link found in the 

references section of this document, which demonstrated the 

basics of forward propagation, backpropagation, and weight 

updates using sigmoid activations. 

The results of the experiments were captured in two 

stages: first, using a Naive Bayes classifier, and second, using a 

neural network. Both models were trained in 70% of the dataset 

and evaluated on the remaining 30%. The Naive Bayes model 

achieved an accuracy of approximately 97.78%, with high 

precision and recall due to the relatively clean and well-labeled 

dataset, and because of the efforts made in preprocessing to make 

the data easier to work with in the latter part of the project. The 

neural network achieved a slightly lower accuracy of 95.56%, 

which is expected given higher flexibility and sensitivity to 

training dynamics such as learning rate and initialization. 

However, the model demonstrated stable learning behavior due to 

the use of early stopping, which prevented overfitting by halting 

training when validation loss no longer improved. This achieved a 

key requirement of the project. 

To better understand the training process and model 

generalization, graphs were generated for both training and 

validation loss and accuracy across epochs. These visualizations 

showed a steady decline in loss and a rise in accuracy, eventually 

plateauing as early stopping was triggered. The graphs are shown 

below. 

 
 

 
This behavior indicated that the model learned a 

meaningful mapping from inputs to outputs without excessive 

memorization of the training data. The loss and accuracy graphs 

helped confirm that the neural network was neither underfitting 

nor severely overfitting the training data, thanks to the 

regularization provided by early stopping and validation 

monitoring. 

Overall, the experimental results show that both 

algorithms are capable of learning effective driving decisions 

from the dataset. The Naive Bayes model benefits from its 

simplicity and robust performance under independence 

assumptions, while the neural network offers a more adaptable 

architecture that can be scaled and modified for more complex 

scenarios in future work. The graphs and metric results 

collectively validate the reliability of both approaches under the 

conditions set by this project. 

 

V. Conclusion 

This project demonstrated the development and 

evaluation of two popular machine learning models, Naive Bayes 

and Neural Networks, for high-level decision making in 



autonomous vehicles. We used a data set created by Udacity on 

Kaggle - Self-Driving Car. This data set contains a series of 

driving scenarios and structured features suitable for 

classification. The data was split using a 70/30 ratio for training 

and testing the models. 

The sections above discussed the steps we took to 

process the data, create the models, and test the models. We found 

that while Naive Bayes excels in interpretability and speed, neural 

networks offer scalability and adaptability, which made our 

complex, large data set more suitable for the model. Future work 

could expand this project by incorporating recurrent models for 

temporal decision-making, using other skills learned over this 

semester, like reinforcement learning, to optimize driver actions 

and provide a better model that can be used for autonomous 

vehicle decision-making. 
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