
Self-Driving Automobile Decision-Making
James Walsh

Dept. of Computer Science

University of Massachusetts Lowell

James_Walsh4@student.uml.edu

Salwan Sabil

Dept. of Computer Science

University of Massachusetts Lowell

Salwan_Sabil@student.uml.edu

I. Abstract

The shift towards autonomous-driving technology in the car

industry has seen rapid growth and advancements, however, the

toughest obstacle remains decision-making. To meet this

challenge we formulate driving as a Naive Bayes and a Neural

network implementation in which states capture compact sensor-

derived descriptors of the environment in order to interpret real-

time driving data (lane position, speed, traffic), selecting driving

actions optimal to the current driving data (braking, accelerating,

turning), and dynamically adapting to traffic situations to optimize

safety. The dataset was divided into training and testing subsets,

which were split into a 70/30 dataset to ensure fair evaluation.

The Naive Bayes classifier was trained using the training data and

tested for accuracy using the testing set (unseen data), which

provided a baseline for comparison. Then we created a

feedforward Neural Network incorporating features such as

forward propagation, backpropagation, and early stopping to

prevent overfitting. To assess the model generalization over the

data set and overfitting behavior, training and validation loss and

accuracy were plotted across epochs. Model performance was

evaluated using accuracy, precision, recall, and F1 score metrics.

The results of this project demonstrate that while both models

performed well, the neural network benefited from the flexibility

of learned representations and robust regularization through early

stopping, achieving competitive performance.

II. Introduction

Advances in technology dealing with perception have

allowed autonomous vehicles to detect lanes, traffic signals, and

nearby actors with increasing reliability. Yet perception alone

does not guarantee safety. A self-driving car must decide how to

act on what it sees. Choosing the wrong maneuver or reacting too

slowly can turn perfect sensor readings into hazardous outcomes.

This project tackles that problem by framing high-level driving

decisions as a Naive Bayes and Neural Network. The stakes are.

high. U.S. roads alone recorded an estimated 42,795 traffic

fatalities in 2022, and human error is implicated in the vast

majority of crashes. A dependable AI controller that can reason

consistently about safety, comfort, and efficiency would be

beneficial to drivers. The Primary Goal is to understand the trade-

offs between simplicity and flexibility when choosing between a

probabilistic model like Naive Bayes and a more complex, non-

linear model like a neural network.

Naive Bayes classifiers operate on Baye’s Theorem and are

known for their speed and effectiveness in high-dimensional

problems; this was our reasoning for implementing this for our

project. On the other hand, neural networks are powerful and

capable of learning complex relationships in data sets. However,

they require careful tuning and regularization methods to avoid

overfitting. Our project emphasizes both of these by implementing

and evaluating the models effectively. To ensure a fair

comparison of the dataset (given its size), we split the set into

training and testing sets (70/30). The neural network includes

essential features such as forward and backward propagation,

mean squared error loss, and early stopping. All work towards an

effective model and to avoid overfitting. Performance was

evaluated using accuracy precision, recall, and F1 score.

Visualization of training data and accuracy gives us visuals to see

how the model is performing. Through this process, we were able

to highlight differences in models, all while reaching our goal in

the brief time span of the project.

III. Description

 The database that will be used in this project was found on

Kaggle, created by Udacity. The Self-Driving Cars dataset

consists of real-world data collected from simulations of

autonomous vehicles. Particularly, the dataset includes sensor

reading, camera images, and driving behavior records. These

pieces of data will be suitable for training the model developed in

this project. The dataset’s picture labeling is as follows: car,’

‘truck’, ‘pedestrian’, ‘bicyclist’, and ‘light’. These are all

examples of objects a self-driving vehicle would see when

driving. The dataset also includes steering angles, throttle and

brake data, speed data, lidar and sensor data, lane information,

and traffic light status. The collection of this data will produce a

well-trained model that can optimize autonomous vehicle

decision-making.

Our implementation begins with parsing the features

listed in the dataset, such as relevant fields like speed, object

types, traffic light status, lane position, and sensor inputs. All

were selected based on their relevance to decision-making when

driving. We then normalized continuous variables such as speed,

throttle, and distances using standard score scaling to ensure

consistency across features. This was valuable when training the

model to ensure accuracy. Next, the target outputs, representing

different driving maneuvers, were encoded numerically and

converted into one vector that was used for neural network

training. In preprocessing, we focused on building a compact

preprocessing pipeline that converts the high-resolution Udacity

camera frames into a form that both learning algorithms can

process quickly. Each RGB image is read from disk, resized

to 64 × 64 pixels to reduce memory and training time, converted to

grayscale, and flattened into a 4096-element vector. These vectors

are then scaled to the [0,1] range so the neural network’s gradients

remain well-behaved. Corresponding object labels, car, truck,

pedestrian, bicyclist, and traffic light are mapped to integers, after

which a single stratified 70%/30% split is applied. The resulting

feature matrix and target array are cached in a lightweight HDF5

file so that subsequent runs can bypass the image-processing step

entirely. Below are images of our preprocessing output.

 This image pulls from the new list of sample images that

are labeled 1 through 5 according to what the image displays.

Below is an enlarged view of one of the samples.

 This graph shows the label distributions of a subset of

images in the dataset. As shown, there are diverse types of images

that are used in the training process.

Training and evaluation are straightforward. The neural

network iterates through the 70 % training partition in mini-

batches of thirty-two, calculating validation accuracy on the 30 %

hold-out set after every epoch and checkpointing the weights that

achieve the best score. We implemented an early stopping

technique used during validation of a subset, which prevented

overfitting of the smaller subset of the training data. Loss and

accuracy of the network were record after each epoch to visualize

learning progress and detect overfitting. The Naïve Bayes model

is fit once on the same training split and then scored on the

identical test split. After training, for testing, both models were

evaluated on the 30% testing set. The performance was measured

using the following metrics: accuracy, precision, recall, and F1

Score. Also, visualization of loss and accuracy curves for both

training and validation data provided additional insight into the

model's generalization and overfitting behavior.

IV. Experimental Evaluation

To conduct the experiments for this project, only

fundamental Python libraries were used to ensure full

transparency, manual control, and to develop a better

understanding of the processes completed when implementing a

model through the modeling process. Specifically, the

implementation relied on numpy for all numerical computations

and array operations, and matplotlib for visualizing training

progress and results. No machine learning libraries such as scikit-

learn, TensorFlow, or PyTorch were used for model

implementation, training, or evaluation. This restriction highlights

the internal mechanics of both algorithms due to the brief time

span of the project. However, this scratch process reinforces an

educational understanding of how classification models operate

under the hood.

The neural network component of the project was built

entirely from scratch, beginning with a reference implementation

introduced in class. The original version included a simple two-

layer feedforward neural network trained on manually defined

binary image data. The source code provided by our professor

served as a starting point and was significantly extended to

include dataset preprocessing, dynamic input sizing, early

stopping functionality, loss tracking, and full evaluation metrics.

For reference, the original classroom neural network

implementation can be summarized by the link found in the

references section of this document, which demonstrated the

basics of forward propagation, backpropagation, and weight

updates using sigmoid activations.

The results of the experiments were captured in two

stages: first, using a Naive Bayes classifier, and second, using a

neural network. Both models were trained in 70% of the dataset

and evaluated on the remaining 30%. The Naive Bayes model

achieved an accuracy of approximately 97.78%, with high

precision and recall due to the relatively clean and well-labeled

dataset, and because of the efforts made in preprocessing to make

the data easier to work with in the latter part of the project. The

neural network achieved a slightly lower accuracy of 95.56%,

which is expected given higher flexibility and sensitivity to

training dynamics such as learning rate and initialization.

However, the model demonstrated stable learning behavior due to

the use of early stopping, which prevented overfitting by halting

training when validation loss no longer improved. This achieved a

key requirement of the project.

To better understand the training process and model

generalization, graphs were generated for both training and

validation loss and accuracy across epochs. These visualizations

showed a steady decline in loss and a rise in accuracy, eventually

plateauing as early stopping was triggered. The graphs are shown

below.

This behavior indicated that the model learned a

meaningful mapping from inputs to outputs without excessive

memorization of the training data. The loss and accuracy graphs

helped confirm that the neural network was neither underfitting

nor severely overfitting the training data, thanks to the

regularization provided by early stopping and validation

monitoring.

Overall, the experimental results show that both

algorithms are capable of learning effective driving decisions

from the dataset. The Naive Bayes model benefits from its

simplicity and robust performance under independence

assumptions, while the neural network offers a more adaptable

architecture that can be scaled and modified for more complex

scenarios in future work. The graphs and metric results

collectively validate the reliability of both approaches under the

conditions set by this project.

V. Conclusion

This project demonstrated the development and

evaluation of two popular machine learning models, Naive Bayes

and Neural Networks, for high-level decision making in

autonomous vehicles. We used a data set created by Udacity on

Kaggle - Self-Driving Car. This data set contains a series of

driving scenarios and structured features suitable for

classification. The data was split using a 70/30 ratio for training

and testing the models.

The sections above discussed the steps we took to

process the data, create the models, and test the models. We found

that while Naive Bayes excels in interpretability and speed, neural

networks offer scalability and adaptability, which made our

complex, large data set more suitable for the model. Future work

could expand this project by incorporating recurrent models for

temporal decision-making, using other skills learned over this

semester, like reinforcement learning, to optimize driver actions

and provide a better model that can be used for autonomous

vehicle decision-making.

VI. References

Udacity, “Self-Driving Car Image Dataset” Kaggle, 2016.

[Online]. Available:

https://www.kaggle.com/datasets/alincijov/self-driving-cars/data
Naive Baye’s Implementation Starter Code:

https://colab.research.google.com/drive/1Ja4NcjEZ8nwOPqTCIY

EtBuSP2xdlyYJP?usp=sharing

Neural Network Implementation Starter Code:

https://colab.research.google.com/drive/1Xt6O325NEL1FQeAfFq

zXX7x0hm9YA7ZW?usp=sharing

link to our data set:

https://drive.google.com/drive/folders/1AekX8GZMJGqoTEN

WifcqZyHwLcNT8tEi?usp=sharing

https://www.kaggle.com/datasets/alincijov/self-driving-cars/data
https://colab.research.google.com/drive/1Ja4NcjEZ8nwOPqTCIYEtBuSP2xdlyYJP?usp=sharing
https://colab.research.google.com/drive/1Ja4NcjEZ8nwOPqTCIYEtBuSP2xdlyYJP?usp=sharing
https://colab.research.google.com/drive/1Xt6O325NEL1FQeAfFqzXX7x0hm9YA7ZW?usp=sharing
https://colab.research.google.com/drive/1Xt6O325NEL1FQeAfFqzXX7x0hm9YA7ZW?usp=sharing
https://drive.google.com/drive/folders/1AekX8GZMJGqoTENWifcqZyHwLcNT8tEi?usp=sharing
https://drive.google.com/drive/folders/1AekX8GZMJGqoTENWifcqZyHwLcNT8tEi?usp=sharing

